Chemical Equilibria - Questions by Topic

Q1.

Calcium oxide is manufactured by heating limestone at 1000 °C for 30 minutes.

The equation for the reaction is:

$$CaCO_3(s) \rightleftharpoons CaO(s) + CO_2(g)$$
 $\Delta_r H = +178 \text{ kJ mol}^{-1}$

(a) The numerical value of the equilibrium constant for this reaction is increased by:

(1)

- A allowing the carbon dioxide to escape
- **B** increasing the heating time
- **C** increasing the temperature
- **D** reducing the pressure
- (b) Which is the correct expression for the equilibrium constant, K_c , for this reaction?

(1)

- \square A $K_c = [CO_2]$
- $\square \quad \mathbf{C} \quad K_{c} = \frac{[\mathsf{CaCO}_{3}]}{[\mathsf{CaO}][\mathsf{CO}_{2}]}$
- $\square \quad \mathbf{D} \quad K_{c} = \frac{[\mathsf{CaO}][\mathsf{CO}_{2}]}{[\mathsf{CaCO}_{3}]}$

(Total for question = 2 marks)

Q2.

lodine was dissolved in an organic solvent, trichloromethane, and the resulting solution added to an equal volume of deionised water. The mixture was then shaken, producing two immiscible solutions: iodine in water and iodine in trichloromethane.

At equilibrium, the equation for the reaction can be written as:

$$I_2(trichloromethane) = I_2(aq)$$

(a) What is the expression for this equilibrium constant, K_c ?

(1)

- $\square \quad \mathbf{A} \quad K_{c} = \frac{[I_{2}(trichloromethane)]}{[I_{2}(aq)]}$
- $\square \quad \mathbf{B} \quad K_{c} = \frac{(I_{2}(aq))}{(I_{2}(trichloromethane))}$
- $\square \quad \mathbf{C} \quad \mathcal{K}_{c} = \frac{I_{2}(aq)}{I_{2}(trichloromethane)}$
- (b) Which statement describes what is happening at equilibrium?

(1)

- A iodine molecules move from the water to the trichloromethane layer only
- **B** iodine molecules move from the trichloromethane to the water layer only
- D there is no movement of individual iodine molecules

(Total for question = 2 marks)

Q3.

This question is about the thermodynamics of the reaction:

$$N_2O_4(g) \to 2NO_2(g)$$
 $\Delta H = +57.2 \text{ kJ mol}^{-1}$.

Compound	Standard molar entropy at 298 K, S [⊕] / J K ⁻¹ mol ⁻¹	Standard molar enthalpy of formation at 298 K, $\Delta_t H^{\oplus}$ / kJ mol ⁻¹	Colour
NO ₂	+240.0	+33.2	brown
N ₂ O ₄	+304.2		colourless

(a) Calculate the entropy change for the reaction, using the information in the table.

Include a sign and units in your answer.

(2)

(b) Calculate the enthalpy change of formation, $\Delta_f H$, of $N_2 O_4$ (g) at 298 K, using the information in the table and the enthalpy change of the reaction.

Include a sign and units in your answer.

(2)

(c) Calculate the entropy change of the surroundings, $\Delta S_{\text{surroundings}}$, at 298 K.

Give your answer to an appropriate number of significant figures. Include a sign and units in your answer.

(3)

(d) (i) Use your answers to parts (a) and (c) to calculate the total entropy change, ΔS_{total} , for this reaction at 298 K.

(1)

(ii) This reaction can also be written as an equilibrium:

$$N_2O_4(g) = 2NO_2(g)$$

Calculate the temperature at which ΔS_{total} is zero for this equilibrium.

(2)

(e) (i) Write the expression for the equilibrium constant, $K_{\rm p}$, for this reaction, including the units, if any.

(2)

(ii) In an experiment, 10 mol of $N_2O_4(g)$ was placed in a closed container at 50 °C. At equilibrium, 27% of the $N_2O_4(g)$ had dissociated, and the pressure in the container was 4.0 at	n.
Calculate the value of K_p at 50 °C.	
	4)
	,
(iii) The total pressure is doubled to 8.0 atm.	
State the effect on K_p .	
(1)	
(iv) The total pressure is doubled to 8.0 atm at constant temperature.	
Explain the change in the percentage dissociation of $N_2O_4(g)$ by considering the effect on the partial pressures of $NO_2(g)$ and $N_2O_4(g)$.	9
	(3)

Edexcel (IAL) Chemistry A-level